

George Fox University
H.S. Programming Contest

Division I
2025

	

General Notes

1. Do the problems in any order you like. They do not have to be done in order
(hint: the easiest problem may not be the first problem… but probably is)

2. Scoring: The team who solves the most problems in the least amount of time with the least
submissions wins. Each wrong submission will receive a 20 min time penalty that will only be
added to the time score once the problem has been successfully solved. Time is calculated
for each problem as the total time from the start of the contest to the time it was solved.

3. There is no extraneous input. All input is exactly as specified in the problem. Integer inputs
will not have leading zeros.

4. Your program should not print extraneous output. Do not welcome the user. Do not prompt
for input. Follow the form exactly as given in the problem.
(hint: spaces? No spaces? What does spec say!)

5. All solutions must be a single source code file. (no spaces in filenames)

Division I – 2025

 1

This page intentionally left blank

Division I – 2025

 2

1. Wake Up!

Marcus is just a taller than average student that struggles to wake up for classes. You can help him
wake up. Draw Marcus’s alarm clock at 7:00 A.M.

Input
This problem has no input.

Output
Reproduce the ascii art picture of Marcus’s alarm clock on the screen. Note: the numbers along the top
and left side of the example output are for convenience only and should not be included in the output

Example Output to Screen
01234567890123456789012345678901234567890123
1 __
2 /______________________________________ /|
3| ___________________________________ | |
4| | | | |
5| | ******** ******** ******** | | |
6| | ******** ** ******** ******** | | |
7| | ** ** ** ** ** ** | | |
8| | ** ** ** ** ** | | |
9| | ** ** ** ** ** | | |
0| | ** ** ** ** ** ** | | |
1| | ** ** ******** ******** | | |
2| | ** ******** ******** | | |
3| |___________________________________| | |
4|_______________________________________|/

Division I – 2025

 3

This page intentionally left blank

Division I – 2025

 4

2. Gates

Logic gates are important in the world of electrical engineering. Marcus has been studying up on his
logical operators, drawing diagrams and truth tables and whatnot. write a program to help with some
digital logic and generate a truth table for a given boolean statement so Marcus can check his work.

Input
The first input will contain a single integer n that indicates the number of data sets that follow. Each
data set will start with a single integer x denoting how many variables are in the following statement,
followed by a boolean expression consisting of !,&,|,^, and letters A-G. A letter will not appear in the
string unless the letter preceding it has already occurred in the string as well. For example, there will
be no test case B&D, as B occurs without an A, and there will be no test case B&A, as A did not
precede B. Follow order of operations. There will be no parenthesis.

Reminder: !, &, |, ^ represent not, and, or, xor respectively

Output
For each data set, output the truth table for the given boolean expression. The first column of the truth
table should represent A, the second B, the third C, and so on. The truth table must be in binary order.
For example, in the first test case, if you were to replace the boolean values of A, B, and C with 1’s for
true and 0’s for false, the boolean combination with the smallest binary representation would have to
come first. Columns also must be properly aligned with width of 6. Each truth table is followed by a
blank line.

Example Input
2
3 A&B^C
2 A|B

Example Output to Screen
FALSE FALSE FALSE FALSE
FALSE FASLE TRUE TRUE
FALSE TRUE FALSE FALSE
FALSE TRUE TRUE TRUE
TRUE FALSE FALSE FALSE
TRUE FALSE TRUE TRUE
TRUE TRUE FALSE TRUE
TRUE TRUE TRUE FALSE

FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

Division I – 2025

 5

This page intentionally left blank

Division I – 2025

 6

3. Ka Boom

You decide to create a game involving a 3d maze with destructible walls, where all the character has to
work with is bombs. In order to determine the number of bombs to provide for each level, you need to
know the minimum amount necessary to reach the exit and base it off of that. Your task is to write a
program that will find the smallest number of bombs necessary to reach the exit. Each bomb can
destroy one wall, leaving a blank space in its place.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will start with three integers f, r, and c, representing the number of layers, rows, and
columns, respectively. The next f sets of r lines will be the maze, with every set of r lines being one
layer of the maze.

Output
For each data set, output the smallest number of bombs necessary to escape the maze.

Example Input
2
2 3 3
S##
##E

#.#
#..

1 2 10
S#.####.#E
..##..###.

Example Output to Screen
1
5

Division I – 2025

 7

This page intentionally left blank

Division I – 2025

 8

4. Sudoku

You are tasked by your very smart uncle to solve sudoku puzzles. However, you have never actually
done sudoku. Your uncle teaches you that sudoku is a grid based number puzzle where no value is
repeated on the same column or row. The values used in the puzzle range from 1 to 9. Furthermore,
your uncle explains that the grid of numbers has 9 larger squares. Each of the 9 squares contain 9
numbers from the grid. The squares can be formed by drawing straight horizontal and vertical lines
every 3 numbers across and down the grid. You uncle explains that a number can only be used once
inside of each of the 9 squares. After informing you, you uncle challenges you to solve a puzzle. Your
job is to write a program to solve the sudoku puzzle.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will consist of a 9x9 grid of numbers. This grid of numbers represents the sudoku puzzle. All
blank spaces in the puzzle are represented by 0s. All numbers (1-9) represent parts of the puzzle that
have already been completed. Your job is to complete the puzzle by replacing the 0s with the correct
numbers. There will be a blank line between each grid of numbers.

Output
For each data set, output a 9x9 grid of numbers that represents the completed sudoku puzzle as
formatted below (one space between digits horizontally) followed by a blank line.

Example Input
1
5 6 4 1 3 2 8 7 9
1 7 8 4 6 9 5 2 0
3 2 9 0 8 0 6 0 4
7 9 3 6 1 8 0 4 0
6 1 5 2 0 7 0 0 8
8 4 0 0 5 3 1 6 7
4 3 1 0 7 0 9 5 2
0 5 0 3 0 0 0 8 1
2 0 7 0 9 0 0 3 0

Example Output to Screen
5 6 4 1 3 2 8 7 9
1 7 8 4 6 9 5 2 3
3 2 9 7 8 5 6 1 4
7 9 3 6 1 8 2 4 5
6 1 5 2 4 7 3 9 8
8 4 2 9 5 3 1 6 7
4 3 1 8 7 6 9 5 2
9 5 6 3 2 4 7 8 1
2 8 7 5 9 1 4 3 6

	

Division I – 2025

 9

This page intentionally left blank

Division I – 2025

 10

5. No Thanks

In the card game “No Thanks,” the deck of cards consists of 36 cards numbered 1–36, and players
collect cards to their score pile as the game is played. A player’s final score is the sum of the
numbers on their collected cards, with one exception: if a player has collected any cards with two
or more consecutive numbers, only the smallest number of that group counts toward the score.
Your job is to compute the score for a single player’s pile of cards, though here we allow play with
a deck much larger than 36 cards.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will consist of a single integer, n, representing the number of cards collected followed by n
integers representing the numbers on the collected cards. You may assume that
1 <= n <= 90,000, all card values are in the range [1, 90000] inclusive, and no card value is
repeated.

Output
For each data set, output the score for the given set of cards

Example Input
2
5
1 7 5 3 4
6
2 1 3 8 4 5

Example Output to Screen
11
9

Division I – 2025

 11

This page intentionally left blank

Division I – 2025

 12

6. Reconstruct Sum

On a whiteboard, you have found a list of integers. Is it possible to use all of them to write down a
correct arithmetic expression where one of them is the sum of all the others?

You may not alter the integers in any way (e.g., changing the sign or concatenating).

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will consist of a single integer n (1 <= n <= 104), representing the number of integers on
the whiteboard. The next n inputs are the integers on the whiteboard. Their absolute values
are guaranteed to be at most 105.

Output
For each data set, output a single integer x which is one of the inputs, and is the sum of all the others.
If there are no such values of x, output the string ‘BAD’

Example Input
3
4
1
6
3
2
4
-2
0
5
-3
5
1
10
4
2
-3

Example Output to the Screen
6
0
BAD

Division I – 2025

 13

This page intentionally left blank

Division I – 2025

 14

7. Kangaroo Party

A group of kangaroos live in houses on the number line. They all want to watch the Kangaroo
Bowl!

Because not all of the kangaroos can fit a single house, they will designate two kangaroos to each
host a party at their house. All other kangaroos will choose to go to the house that is closest to
them, picking arbitrarily if they are the same distance from both.

A kangaroo expends (a – b)2 units of energy to travel from location a to location b. Compute the
minimum total units of energy expended if the two party house locations are chosen optimally

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will start with a single integer n (2 <= n <= 50), which is the number of kangaroos. The next n
inputs will each be an integer x (-1,000 <= x <= 1,000), which is the location on the number line of the
house of one of the kangaroos. Each location will be distinct.

Output
For each data set, output the minimum total units of energy expended by all the kangaroos, given
that the party house locations are chosen optimally.

Example input
1
5
0
3
-3
10
11

Example Output to the Screen
19

Division I – 2025

 15

This page intentionally left blank
	

Division I – 2025

 16

8. Ant Typing

Consider a configurable keyboard where keys can be moved about. An ant is walking on the top
row of this keyboard and needs to type a numeric string. The ant starts on the leftmost key of the
top row, which contains 9 keys, some permutation of the digits from 1 to 9. On a given second, the
ant can perform one of three operations:

1. Stay on that key. The digit corresponding to that key will be entered.
2. Move one key to the left. This can only happen if the ant is not on the leftmost key.
3. Move one key to the right. This can only happen if the ant is not on the rightmost key.

Compute the minimum number of seconds needed for the ant to type out the given numeric string,
over all possible numeric key permutations.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will contain a single string s (1 <= |s| <= 105) consisting only of numeric digit
characters from 1 to 9. This is the numeric string that the ant needs to type.

Output
For each data set, output a single integer, which is the minimum number of seconds needed for the ant
to type out the given numeric string, over all possible numeric key permutations.

Example Input
1
78432579

Example Output to Screen
20
	

Division I – 2025

 17

This page intentionally left blank

Division I – 2025

 18

9. Longest Common Subsequence

You are given n strings, each a permutation of the first k upper-case letters of the alphabet.

String s is a subsequence of string t if and only if it is possible to delete some (possibly zero)
characters from the string t to get the string s.

Compute the length of the longest common subsequence of all n strings.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will start with two integers n (1 <= n <= 105) and k (1 <= k <= 26), where n is
the number of strings, and the strings are all permutations of the first k upper-case letters of the
alphabet.

Each of the next n inputs contains a single string t. It is guaranteed that every t contains each of the
first k upper-case letters of the alphabet exactly once.

Output
For each data set, output a single integer, the length of the longest subsequence that appears in all n
strings.

Example Input
3
2 3
BAC
ABC
3 8
HGBDFCAE
ADBGHFCE
HCFGBDAE
6 8
AHFBGDCE
FABGCEHD
AHDGFBCE
DABHGCFE
ABCHFEDG
DGABHFCE

Example Output to Screen
2
3
4

	

Division I – 2025

 19

This page intentionally left blank

Division I – 2025

 20

10. Rainbow Numbers

Define a rainbow number as an integer that, when represented in base 10 with no leading zeros,
has no two adjacent digits the same.

Given lower and upper bounds, count the number of rainbow numbers between them (inclusive).

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will consist of single integer L (1 <= L < 10!"!), which is the lower bound, and a second
integer U (1 <= U < 10!"!), which is the upper bound. It is guaranteed that L <= U.

Note that the limits are not a misprint; L and U can be up to 105 digits long.

Output
Output a single integer, which is the number of rainbow numbers between L and U (inclusive).
Because this number may be very large, output it modulo 998,244,353.

Example Input
2
1
10
12345
65432

Example Output to Screen
10
35882

	

Division I – 2025

 21

This page intentionally left blank

	

Division I – 2025

 22

11. Exam Manipulation

A group of students is taking a True/False exam. Each question is worth one point. An unethical
proctor wants to make your students look as good as possible—so they cheat! (I know, you would
never actually do that.) To cheat in this case, they manipulate the answer key so that the lowest score
in the class is as high as possible.

What is the best possible lowest score you can achieve?

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will consist of two integers n (1 <= n <= 1,000) and k (1<= k <= 10), where n is the
number of students, and k is the number of True/False questions on the exam.

Each of the next n lines contains a string of length k, consisting only of upper-case ‘T’ and uppercase
‘F’. This string represents the answers that a student submitted, in the order the questions
were given.

Output
For each data set, output the best possible lowest score in the class.

Example Input
2
5 4
TFTF
TFFF
TFTT
TFFT
TFTF
3 5
TFTFT
TFTFT
TFTFT

Example Output to Screen
2
5
	

Division I – 2025

 23

This page intentionally left blank

Division I – 2025

 24

12. Bad Packing

We have a knapsack of integral capacity and some objects of assorted integral sizes. We attempt to fill
the knapsack up, but unfortunately, we are really bad at it, so we end up wasting a lot of space that
can’t be further filled by any of the remaining objects. In fact, we are optimally bad at this! How bad
can we possibly be?

Figure out the least capacity we can use where we cannot place any of the remaining objects in the
knapsack. For example, suppose we have 3 objects with weights 3, 5 and 3, and our knapsack has
capacity 6. If we foolishly pack the object with weight 5 first, we cannot place either of the other two
objects in the knapsack. That’s the worst we can do, so 5 is the answer.

Input
The first input will contain a single integer z that indicates the number of data sets that follow. Each
data set will initially consist of two integers n (1 <= n <= 1,000) and c (1 <= c <= 105), where n is the
number of objects we want to pack and c is the capacity of the knapsack.

Each of the next n inputs contain a single integer w (1 <= w <= c). These are the weights of the
objects.

Output
For each data set, output the least capacity we can use where we cannot place any of the
remaining objects in the knapsack.

Example Input
1
3 6
3
5
3

Example Output to Screen
5
	

Division I – 2025

 25

This page intentionally left blank

